# The tau neutrino magnetic moment

Reinhard Schwienhorst University of Minnesota

Long report E872 phone meeting, 4/23/99

#### Outline

- Physics reminder
- Analysis:
  - Cuts
  - Monte Carlo Analysis
  - Data Analysis
  - Example: event energy
- Outlook
- Conclusion

# Physics reminder

- Neutrino-electron scattering
  - no hadronic activity in the event
  - small forward angle  $\theta$
- magnetic moment interaction
  - cross section

$$\frac{d\sigma}{dT} \propto \mu_{\nu}^{2} \left( \frac{E_{\nu}}{T} - 1 \right)$$

- $\mu_{\nu}$ : neutrino magnetic moment
- $E_v$ : neutrino energy
- T: electron kinetic energy

# Electron energy and angle



## Expected event yield

- If  $\mu_v = 5.4 \times 10^{-7} \mu_B$  (the current limit):
  - with an electron energy cutoff at 5GeV
    - current neutrino event sample
    - expect  $\approx 10 \, v_{\tau}$  magnetic moment interactions
    - (compared to  $\approx 40 v_{\tau}$  CC interaction)
  - with an electron energy cutoff at 0.5GeV
    - .nustrip files, single track events
    - expect  $\approx 30 \, v_{\tau}$  magnetic moment interactions
  - with an electron energy cutoff at 10MeV
    - emulsion analysis
    - expect  $\approx 80 \text{ v}_{\tau}$  magnetic moment interactions
    - we must scan at least 1/3 of the emulsion to improve the sensitivity

## Analysis outline

- Make cuts that are optimized for magnetic moment events
- cross-check using  $v_{\mu}CC$  events (data and MC)
  - easy to find
- apply to neutrino candidate events
  - apply to MC of neutrino candidates
  - find the expected number of events
- apply to .nustrip files
  - find (almost) all candidate events

#### Cuts

- Remove hadrons:
- Muon ID
  - remove muons and hadrons
  - watch out for noise
  - require <2 MID hits (sum over all tracks)</p>

#### • EMCAL

- require E<sub>EMCAL</sub><20GeV
- require for each track with P>4GeV that  $E_{\rm EMCAL}$ <P/2 for blocks within 0.2m of the track
- check a rectangle of x<0.7m and y<0.2m distance to the vertex:</p>
  - require at least 50% of the EMCAL energy to be inside the rectangle
  - require the energy outside the rectangle to be less than 1GeV

### Cuts (II)

#### • SF system

- remove events with large pulseheight hits in consecutive planes of the same view
- remove events with tracks that pass through a module (linked tracks)

#### total event energy

- use the SF hits and the EMCAL to determine the total event energy
- require the total event energy to be <20GeV</p>

#### single track events

- require negative momentum
- require showering in the emulsion
- require angle < 0.2rad

## Monte Carlo analysis

- So far only period 4
- Trigger efficiency 65% for T>0.5GeV magnetic moment interactions ( $v_{\tau}$ )
- The cuts remove 35% of the magnetic moment interactions
  - each cut is tuned to remove  $\approx 5\%$

# Neutrino candidate analysis

- Advantage:
  - small sample
- Disadvantage:
  - total energy >5GeV
- Result for period 4:
  - three candidates
  - sent to Nagoya for emulsion scanning
  - expect ten events at the current limit ( $\mu_v = 5.4 \times 10^{-7} \mu_B$ )

### .nustrip analysis

- $\approx 150,000$  events in the .nustrip files
- the cuts reduce it to  $\approx 10,000$  events (6%)
- more work has to be done
  - ideas:
  - distinguish EM showers from hadron showers (width,...)
  - require a straight track to come from the vertex
  - visual check to remove straight hadron tracks in the SF

**–** ...

## Example: event energy

- Generate single 10GeV electrons with the MC
  - reconstruct the electron energy
    - find # of hits behind each SF module, # of VC hits, EMCAL energy
    - assign weight to each number and add to get the total visible energy
- generate μCC neutrino events
  - reconstruct the muon momentum
  - find the hadronic energy (number of hits)
  - compare to data

#### Plots:

- Reconstructed electron energy
  - MC, 10GeV electrons, period 4 configuration, target: 01111
  - width is 18.5%
- Reconstructed hadron energy
  - $\mu$ CC events, including nonprompt vs, require  $\mu$ , 0<P $_{\mu}$ <100GeV
  - plot  $P_{\mu}$ , hadronic energy, SF hits, VC hits
- Reconstructed neutrino energy
  - $\mu$ CC events, including nonprompt vs, require  $\mu$ , 0<P $_{\mu}$ <100GeV
  - compare MC and period 4 data
  - plot (estimate-true)/true
  - width is 25%

# Reconstructed energy for 10GeV electrons



Method: add up all hits in the SF, VC. Add EMCAL energy

#### Muon momentum comparison





MC

Period 4 data

### # of hits comparison: module 4 and VC





MC

Period 4 data

# Energy estimate

- Problem:
  - counting SF hits under-estimates the hadronic energy
- Cause:
  - the number of hits in the SF system is not accurate
    - simulation of hadron showers
    - small momentum, large angle hadrons
    - simulation of the IIT-SF system
- Solution:
  - only consider hits within a distance of 1cm to the vertex

# # of SF module 4 hits within 1cm of the vertex





MC data

# Neutrino energy estimate, µCC events corrected analysis





MC

Period 4 data

### Corrected neutrino energy estimate, accuracy



#### Outlook for the next two months

- Finish .nustrip analysis for period 4
- Analyze MC events for periods 1,2,3
- Analyze data for period 1,2,3
  - neutrino candidates and .nustrip files
- Continue writing thesis
  - complete detector chapter
  - write analysis chapter
- Visit Nagoya in June
  - get an update on the events I sent to Japan
  - discuss emulsion search

#### Conclusion

- The analysis is still in progress
- I have sent three events to Nagoya
  - this implies:  $\mu_{\nu_{\tau}} < 5 \times 10^{-7} \mu_{\rm B}$
- Searching for event candidates in the .nustrip files will give the best limit
- The Emulsion/SF system is a good calorimeter
- The analysis of  $\mu$ CC events shows a deviation from the current MC
  - $-\mu$  momentum and total event energy
  - the apparent neutrino spectrum has a smaller mean energy